DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE - NOVEMBER - 2022

 APPLIED MECHANICS AND STRENGTH OF MATERIALS

 APPLIED MECHANICS AND STRENGTH OF MATERIALS}
(Maximum Marks : 100)
(Time : 3 hours)
PART - A
(Maximum Marks : 10)
Marks
I. Answer all questions in one or two sentences. Each question carries 2 marks.

1. Define bulk modulus.
2. Explain the term composite bar.
3. Explain dynamic friction.
4. Define the strength of a riveted joint.
5. Define point of contra flexture relative to an overhanging beam.

> PART -B
> (Maximum Marks : 30)
II. Answer any five of the following questions. Each question carries 6 marks.

1. A steel bar 2 m long and $150 \mathrm{~mm}^{2}$ in section is subjected to an axial pull of 15 kN . Find the elongation of the bar. Take $\mathrm{E}=200 \mathrm{GPa}$.
2. Explain limiting friction and coefficient of friction.
3. State and prove perpendicular axis theorem.
4. Explain caulking and fullering of riveted joints.
5. Distinguish between circumferential and longitudinal stress in a cylindrical shell subjected to internal pressure.
6. Write the different types of springs? Explain.
7. State the difference between column and strut?

PART - C
(Maximum Marks : 60)
(Answer one full question from each unit. Each full question carries 15 marks)
UNIT - I
III. (a) Explain lateral strain and linear strain.
(b) A steel bar is placed between two copper bars each having the same area and length as the steel bar at $15^{\circ} \mathrm{C}$. At this stage they are rigidly connected together at both ends when the temperature is raised to $315^{\circ} \mathrm{C}$. Find the stresses in the bar. Take Es $=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $E c=1 \times 10^{5} \mathrm{MPa}, \alpha \mathrm{s}=1.2 \times 10^{-5} /{ }^{\circ} \mathrm{C}, \alpha \mathrm{c}=1.7 \times 10^{-5} /{ }^{\circ} \mathrm{C}$.

OR

IV. (a) Define: i) Young's modulus ii) Modulus of rigidity iii) Volumetric strain.
(b) A steel rod 1.5 m long and 20 mm diameter is subjected to an axial pull of 100 kN . Find the change in length and diameter of the rod, if $\mathrm{E}=200 \mathrm{GPa}$ and Poisson's ratio, $1 / \mathrm{m}=0.32$.

UNIT - II

V. (a) State the laws of static friction.
(b) A force of 40 N pulls a weight of 60 N up an inclined plane. The force is being applied parallel to the plane if the inclination of the plane is 30°. Find the coefficient of friction.

OR

VI. (a) Find the centroid of the composite section shown in figure I.

(b) Find the moment of inertia of a circular section of diameter ' d ' by integration method. (8)

UNIT -III
VII. (a) State the assumptions while deriving the torsion equation.
(b) A double riveted lap joint is provided in 12 mm thick plate with 22 mm diameter rivets with a pitch of 70 mm . Find the strength and efficiency of the joint. Take the permissible stresses for shearing of rivet, crushing of rivet and tearing of plate as $60 \mathrm{MPa}, 160 \mathrm{MPa}$ and 90 MPa respectively.

OR

VIII. (a) Define the following related to fillet weld
i) Throat of weld
ii) Size of weld.
iii) Toe of weld.
(b) A water main 800 mm diameter contains water at a pressure head of 100 m . If the weight of water is $9810 \mathrm{~N} / \mathrm{m}^{3}$. Find the thickness of the material required for the water main. Given the permissible stress as $20 \mathrm{~N} / \mathrm{mm}^{2}$.

UNIT - IV

IX. (a) Write the bending equation and explain each term.
(b) Draw the SF and BM diagram of a simply supported beam of length 6 m carries a UD load of $2 \mathrm{kN} / \mathrm{m}$ over the entire length. Also find the maximum bending moment.

OR

X. (a) In a closed coil helical spring is made by 10 mm diameter steel rod, the coil consists of 8 turns with a mean diameter of 100 mm . The spring carries a load of 200 N . Find the maximum shear stress induced and the deflection of the spring. Take modulus of rigidity as $8.4 \times 10^{4} \mathrm{MPa}$.
(b) A hollow cylindrical column of 2.3 m long has an external diameter of 40 mm and internal diameter of 35 mm . Young's modulus of material is $205 \mathrm{kN} / \mathrm{mm}^{2}$. Calculate Euler's crippling load of the column. Both ends of the column are hinged.

