TED (15/19) - 3212 (REVISION-2015/19)

A22-06476

Reg.No..... Signature.....

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, APRIL - 2022

DIGITAL CIRCUITS

(Maximum Marks:100)

(Time: 3 Hours)

PART - A

(Maximum marks: 10)

Marks

I. Answer all the questions in one or two sentences. Each question carries 2 marks.

- 1. What is meant by base of a number system?
- 2. Define Fan-Out.
- 3. List two asynchronous inputs.
- 4. Define Sensitivity of a Digital meter.
- 5. Define the term Capacity of a Memory. $(5 \times 2 = 10)$

PART - B

(Maximum Marks: 30)

II Answer *any five* questions from the following. Each question carries 6 marks.

- 1. Convert
 - (i) $(572)_8 = (\dots, \dots)_{16}$ (ii) $(34F)_{16} = (\dots, \dots)_{10}$
 - (iii) $(72.3125)_{10} = (\ldots)_2$
- 2. Implement AND, OR and NOT gates using NAND gates.
- 3. With diagram explain the operation of 4 to 1 Multiplexer.
- 4. Explain the working of D Latch.
- 5. Describe the working principle of 4 bit Synchronous counter.
- 6. Explain the operation of binary weighted resistor type DAC.
- 7. Draw and Explain the circuit of a static RAM cell.

 $(5 \times 6 = 30)$

PART – C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

UNIT - 1

III (a) Convert the Decimal number (-46), 25 to Binary and ADD using 2's complement method. (4)

(b)	Compute	(i)	$(A1)_{16} + (6B)_{16}$	(ii)	111 x 101	(iii)	1001 ÷	11	(6)
-----	---------	-----	-------------------------	------	-----------	-------	--------	----	-----

(c) Simplify the Logic expression AB + A(B+C)+B(B+C) using linear Algebra (5)

OR

IV	(a)	Simplify the Boolean Function	
	•	F (A,B,C,D) = Σ_{m} (1,3,7,11,15) + Σ_{d} (0,2,5)	(6)
	(b)	Simplify the expression $\overline{AB + AC} + \overline{A} \overline{B} C$ using de-Morgan's Theorem	(7)
	(c)	Convert $(11010)_2$ to Gray code	(2)

UNIT – 2

(b)	With neat diagram explain the operation of NOT gate using TTL	(7)
	OR	

VI	(a)	Describe the operation of 2-bit Comparator	(8)
	(b)	Describe the operation of 4 bit binary decoder	(7)

UNIT – 3

VII	(a)	Explain the operation of Master Slave JK Flip Flop.	(7)
	(b)	Describe the operation of UP/DOWN asynchronous counter.	(8)
		OR	
VIII	(a)	Explain the operation of Serial-in-Serial-out Shift Register.	(7)
	(b)	Explain edge triggered SR Flip Flop with help of truth table	(8)
		UNIT – 4	
IX	(a)	Explain the operation of Successive approximation A/D Convertor	(8)
	(b)	Compare RAM and ROM	(7)
		OR	
Х	(a)	Describe about various types of ROM	(7)

(b) List variou	is displays in Digital meter.	Also define Digital	digit and counts,	
Resolution	n of Digital meter.			(8)

....