TED (15/19) - 2002 (REVISION-2015/19)

A22-00439

Reg.No..... Signature.....

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, APRIL - 2022

ENGINEERING MATHEMATICS -II

[Maximum Marks:100]

[Time:3 hours]

PART - A

(Maximum marks : 10)

Marks

I. Answer all the questions in one or two sentences. Each question carries 2 marks.

- Find p so that 2i + pj + k and 3i 2j + 4k are perpendicular. 1.
- Solve for x, if $\begin{vmatrix} x & 4 \\ 9 & x \end{vmatrix} = 0$ 2.
- If $A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$ Evaluate AB 3.

4. Evaluate
$$\int_0^1 \frac{1}{1+x^2} dx$$

Find integrating factor of $\frac{dy}{dx} + xy = 1$ 5. $(5 \times 2 = 10)$

PART - B

(Maximum Marks: 30)

- Π Answer any five questions from the following. Each question carries 6 marks.
 - 1. Find the unit vector perpendicular to the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ where

 $\vec{a} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}, \quad \vec{b} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k}.$

- 2. Find the middle terms of $\left(x \frac{3}{r^2}\right)^7$
- 3. Solve the system of equations by finding the inverse of the coefficient matrix 3x-y+z = 4, 2x - 7y + 3z = -6, x + y - z = 4

4. Solve for x, if
$$\begin{vmatrix} 1 - x - 1 \\ 2 & 3 & x \\ 0 - 1 & x \end{vmatrix} = 2$$

- 5. Evaluate $\int x^2 \sin x \, dx$
- 6. Find the area enclosed between two parabolas $y^2 = 4x$ and $x^2 = 4y$
- 7. Solve $x \frac{dy}{dx} + y = x^2 + 1$ $(5 \times 6 = 30)$

PART – C

(Maximum marks:45) (Answer *one full* question from each unit. Each full question carries 15 marks.)

UNIT - I

III	(a)	Find the area of triangle whose vertices are (2,1,-4), (1,-2,1), (3,2-3)	(5)
	(b)	Find the projection of the vector $2i + j + k$ on the vector $3i - 4j$	(5)
	(c)	Expand binomially $(3x - 2y)^5$	(5)

Expand binomially $(3x - 2y)^5$ (c)

OR

IV	(a)	Find angle between the vectors $2i + j - 2k$ and $3i - j + 3k$.	(5)
	(b)	Find the moment of the forces $3i + j$ and $2i - 3k$ about the point whose	
		position vector is $i + 2j + k$ acted on a point whose position vector is	
		3i - j + k	(5)

(3) Find the term independent of
$$(5x^2 + \frac{2}{x})^{12}$$
 (5)

UNIT –II

V (a) Express the matrix
$$\begin{bmatrix} 2 & -6 & 4 \\ -2 & 1 & 3 \\ 0 & 5 & 4 \end{bmatrix}$$
 as a sum of symmetric and Skew –
Symmetric Matrices (5)

Symmetric Matrices

(b) If A +B =
$$\begin{bmatrix} 2 & 1 \\ -3 & 0 \end{bmatrix}$$
, A-B = $\begin{bmatrix} -2 & 3 \\ 1 & 2 \end{bmatrix}$ then find A and B (5)

(c) Solve by Cramer's rule
$$3x + y - z = 8$$
, $2x + y + 4z = 1$, $x - y + 3z = -2$ (5)

OR

VI (a) If
$$A = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix}$ then verify $(AB)^{-1} = B^{-1}A^{-1}$. (5)

(b) If
$$3\begin{bmatrix} a+b & 5\\ b & 2 \end{bmatrix} + \begin{bmatrix} 1 & -1\\ -2 & c \end{bmatrix} = \begin{bmatrix} 1 & 14\\ 4 & 8 \end{bmatrix}$$
 then find the value of a,b and c (5)

(c) If
$$A = \begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix}$$
 then prove that $A^2 - A - 5I = 0$ (5)

UNIT – III

VII (a) Find
$$\int \frac{1}{1+\sin x} dx$$
 (5)

(b) Evaluate
$$\int_0^{\pi/2} \sqrt{1 + Sin2x} \, dx$$
 (5)

(c) Find
$$\int \frac{2x^2}{1+4x^3} dx$$
 (5)

VIII (a) Find
$$\int_0^{\frac{\pi}{2}} sinx \sqrt{1 + cosx} dx$$
 (5)

(b) Find
$$\int \cos^3 x \, dx$$
 (5)

(c) Evaluate
$$\int_0^2 x^2 \log x \, dx$$
 (5)

UNIT –IV

IX (a) Find the volume of the solid generated by revolving one arch of the curve
$$y = \sin 3x$$
 about the X-axis (5)

(b) Solve
$$\frac{dy}{dx} = \frac{xy^2 + x}{yx^2 + y}$$
 (5)

(c) Solve
$$\frac{d^2y}{dx^2} = \sec^2 x$$
 (5)

OR

X (a) Find the area bounded by
$$y^2 = x$$
 and $x = 0$, $x = 4$, and X -axis (5)

(b) Solve
$$\frac{dy}{dx} + ycotx = 1$$
 (5)

(c) Solve
$$dy = e^{3x-2y} dx$$
 (5)
