DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE,APRIL - 2022

ENGINEERING MATHEMATICS -II
[Maximum Marks:100]

PART - A

(Maximum marks : 10)

Marks

I. Answer all the questions in one or two sentences. Each question carries 2 marks.

1. Find p so that $2 \mathrm{i}+\mathrm{pj}+\mathrm{k}$ and $3 \mathrm{i}-2 \mathrm{j}+4 \mathrm{k}$ are perpendicular.
2. Solve for x , if $\left|\begin{array}{ll}x & 4 \\ 9 & x\end{array}\right|=0$
3. If $\mathrm{A}=\left[\begin{array}{rr}1 & -1 \\ 2 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{rr}0 & 1 \\ -1 & 2\end{array}\right]$ Evaluate AB
4. Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$
5. Find integrating factor of $\frac{d y}{d x}+x y=1$

PART - B

(Maximum Marks: 30)
II Answer any five questions from the following. Each question carries 6 marks.

1. Find the unit vector perpendicular to the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ where

$$
\vec{a}=2 \mathrm{i}+\mathrm{j}-\mathrm{k}, \quad \vec{b}=\mathrm{i}-2 \mathrm{j}+2 \mathrm{k} .
$$

2. Find the middle terms of $\left(x-\frac{3}{x^{2}}\right)^{7}$
3. Solve the system of equations by finding the inverse of the coefficient matrix $3 x-y+z=4,2 x-7 y+3 z=-6, x+y-z=4$
4. Solve for x , if $\left|\begin{array}{rrr}1 & -x & -1 \\ 2 & 3 & x \\ 0 & -1 & x\end{array}\right|=2$
5. Evaluate $\int x^{2} \sin x d x$
6. Find the area enclosed between two parabolas $y^{2}=4 \mathrm{x}$ and $x^{2}=4 \mathrm{y}$
7. Solve $\mathrm{x} \frac{d y}{d x}+\mathrm{y}=x^{2}+1$

PART - C

(Maximum marks:45)
(Answer one full question from each unit. Each full question carries 15 marks.)

UNIT - I

III (a) Find the area of triangle whose vertices are (2,1,-4), (1,-2,1), (3,2-3)
(b) Find the projection of the vector $2 \mathrm{i}+\mathrm{j}-\mathrm{k}$ on the vector $3 \mathrm{i}-4 \mathrm{j}$
(c) Expand binomially $(3 x-2 y)^{5}$

OR

IV (a) Find angle between the vectors $2 \mathrm{i}+\mathrm{j}-2 \mathrm{k}$ and $3 \mathrm{i}-\mathrm{j}+3 \mathrm{k}$.
(b) Find the moment of the forces $3 \mathrm{i}+\mathrm{j}$ and $2 \mathrm{i}-3 \mathrm{k}$ about the point whose position vector is $\mathrm{i}+2 \mathrm{j}+\mathrm{k}$ acted on a point whose position vector is $3 \mathrm{i}-\mathrm{j}+\mathrm{k}$
(3) Find the term independent of $\left(5 x^{2}+\frac{2}{x}\right)^{12}$

UNIT -II

V

VI
(a) If $\mathrm{A}=\left[\begin{array}{ll}2 & 1 \\ 3 & 5\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}1 & -2 \\ 2 & 3\end{array}\right]$ then verify $(A B)^{-1}=B^{-1} A^{-1}$
(b) If $3\left[\begin{array}{cc}a+b & 5 \\ b & 2\end{array}\right]+\left[\begin{array}{cc}1 & -1 \\ -2 & c\end{array}\right]=\left[\begin{array}{cc}1 & 14 \\ 4 & 8\end{array}\right]$ then find the value of a, b and c
(c) If A $=\left[\begin{array}{cc}2 & 1 \\ 3 & -1\end{array}\right]$ then prove that $\mathrm{A}^{2}-\mathrm{A}-5 \mathrm{I}=0$

UNIT - III
VII
(a) Find $\int \frac{1}{1+\sin x} d x$
(b) Evaluate $\int_{0}^{\pi / 2} \sqrt{1+\operatorname{Sin} 2 x} d x$
(c) Find $\int \frac{2 x^{2}}{1+4 x^{3}} d x$

VIII (a) Find $\int_{0}^{\frac{\pi}{2}} \sin x \sqrt{1+\cos x} d x$
(b) Find $\int \cos ^{3} x d x$
(c) Evaluate $\int_{0}^{2} x^{2} \log x d x$

UNIT -IV

IX (a) Find the volume of the solid generated by revolving one arch of the curve

$$
\begin{equation*}
y=\sin 3 x \text { about the } X \text {-axis } \tag{5}
\end{equation*}
$$

(b) Solve $\frac{d y}{d x}=\frac{x y^{2}+x}{y x^{2}+y}$
(c) Solve $\frac{d^{2} y}{d x^{2}}=\sec ^{2} x$

OR
$\mathrm{X} \quad$ (a) Find the area bounded by $y^{2}=x$ and $\mathrm{x}=0, \mathrm{x}=4$, and X -axis
(b) Solve $\frac{d y}{d x}+y \cot x=1$
(c) Solve $\mathrm{dy}=e^{3 x-2 y} \mathrm{dx}$

