Reg.No.
Signature.
DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE -NOVEMBER -2021.

DIGITAL COMPUTER PRINCIPLES

(Maximum Marks : 75)
[Time : 2.15 hours]

PART-A

I. Answer any three questions in one or two sentences. Each question carries 2 marks.

1. Write 2 examples for non-weighted code.
2. Define an encoder.
3. List two types of sequential circuits based on timing of signals.
4. Define the term resolution.
5. List different types of RAMs.

PART - B

II Answer any four of the following questions. Each question carries 6 marks.

1. Implement an X-OR gate and OR gate using NAND gate.
2. Write short notes on.
a) BCD code
b) XS-3 code
3. Convert the following SOP into standard SOP.

$$
\mathrm{Y}=\mathrm{A}+\overline{\mathrm{B}} \mathrm{C}
$$

4. Describe the working of R-S flip flop using NAND gate.
5. Design and implement a half subtractor circuit.
6. Differentiate between sequential and combinational circuit.
7. Describe the need of DAC and ADC in digital systems.

PART - C

(Answer any of the three units from the following. Each full question carries 15 marks)

UNIT I

III (a) State De Morgan's theorem. Using it reduce the following expressions.

1. $\overline{\overline{\mathrm{A}}+\overline{\mathrm{B}}+\mathrm{A} \overline{\mathrm{B}}} \quad$ 2. $(\overline{\mathrm{A}+\overline{\mathrm{B}})(\mathrm{C}+\overline{\mathrm{D}})}$
(b) State the advantages of performing subtraction by complement method.

Perform 2's compliment subtraction for the following binary numbers.

1. 110000-10101 2. 1001-101000

OR

IV (a) Perform the following conversions.

1. (F5A-16) 16 to binary
2. (10110.0101)2 to hexadecimal.
3. $(32.24) 8$ to decimal
4. (895) 10 to octal
(b) Draw the logic symbol and truth table for universal gates.

UNIT- II

V (a) Design and implement a full adder circuit.
(b) Define K-map. List the merits and demerits of K-map.

OR

VI (a) Describe the working of a four input multiplexer.
(b) Minimize the following expression using K-map.

$$
\begin{equation*}
\mathrm{F}(\mathrm{~W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma(1,4,7,10,13)+\Sigma \mathrm{d}(5,14,15) \tag{7}
\end{equation*}
$$

UNIT- III
VII (a) Explain the working of a J K flip flop with a truth table and diagram.
(b) Describe the working of a 3 bit serial in serial out shift register.

OR

VIII (a) Design an asynchronous mod-6 counter using J K flip flop.
(b) Draw the circuit diagram and truth table of a 4 bit ring counter.

UNIT - IV

IX (a) Describe the working of a R-2R ladder type DAC.
(b) Explain different types of ROMs.

OR

\mathbf{X} (a) Develop a programming table for PAL for Boolean functions.
$\mathrm{W}=\mathrm{AB} \overline{\mathrm{C}}+\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C} \overline{\mathrm{D}}$
$\mathrm{X}=\mathrm{A}+\mathrm{BCD}$
$\mathrm{Y}=\overline{\mathrm{A}} \mathrm{B}+\mathrm{CD}+\overline{\mathrm{B}} \overline{\mathrm{D}}$
$Z=A B \bar{C}+\bar{A} \bar{B} C \bar{D}+A \bar{C} \bar{D}+\bar{A} \bar{B} \bar{C} D$
(b) Using appropriate example explain error correction and detection using hamming code.

