TED (15/19) -3133 (Revision- 2015/19)

N21-09783

Reg.No..... Signature.

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE –NOVEMBER -2021.

DIGITAL COMPUTER PRINCIPLES

(Maximum Marks : 75)

PART-A

[Time : 2.15 hours]

Marks

(3x2=6)

- I. Answer any three questions in one or two sentences. Each question carries 2 marks.
 - 1. Write 2 examples for non-weighted code.
 - 2. Define an encoder.
 - 3. List two types of sequential circuits based on timing of signals.
 - 4. Define the term resolution.
 - 5. List different types of RAMs.

PART - B

II Answer **any four** of the following questions . Each question carries 6 marks.

- 1. Implement an X-OR gate and OR gate using NAND gate.
- 2. Write short notes on.a) BCD code b) XS-3 code
- 3. Convert the following SOP into standard SOP. Y=A+ $\overline{B}C$
- 4. Describe the working of R-S flip flop using NAND gate.
- 5. Design and implement a half subtractor circuit.
- 6. Differentiate between sequential and combinational circuit.
- 7. Describe the need of DAC and ADC in digital systems.

PART - C

(Answer any of the three units from the following. Each full question carries 15 marks)

UNIT I

III (a) State De Morgan's theorem. Using it reduce the following expressions.

	1. $\overline{A}\overline{B}+\overline{A}+A\overline{B}$ 2. $(\overline{A}+\overline{B})(C+\overline{D})$	(8)
	(b) State the advantages of performing subtraction by complement method.	
	1 = 110000 = 10101 = 2 = 1001 = 101000	(7)
	1. 110000 - 10101 2. 1001 - 101000 000 000 000 000 000 000 0	(/)
N Z	(a) Derform the fellowing conversions	
1 V	(a) Perform the following conversions. 1. (E5A, 16): (to kinemy $= 2$, (10110,0101) at a house desired	
	1. $(F3A-16)/6$ to binary 2. $(10110.0101)/2$ to nexadecimal.	(9)
	5. (52.24) to decimal 4. (895) to octain (b) Draw the least symbol and trach table for universal sets.	(8)
	(b) Draw the logic symbol and truth table for universal gates.	(7)
V	(a) Design and implement a full adder circuit.	(8)
	(b) Define K-map. List the merits and demerits of K-map.	(7)
	OR	
VI	(a) Describe the working of a four input multiplexer.	(8)
	(b) Minimize the following expression using K-map. $F(W,X,Y,Z) = \Sigma(1,4,7,10,13) + \Sigma d(5,14,15)$	(7)
	UNIT- III	
VI	(a) Explain the working of a J K flip flop with a truth table and diagram.	(8)
	(b) Describe the working of a 3 bit serial in serial out shift register.	(7)
	OR	
VI	II (a) Design an asynchronous mod-6 counter using J K flip flop.	(8)
	(b) Draw the circuit diagram and truth table of a 4 bit ring counter.	(7)
	UNIT – IV	
IX	(a) Describe the working of a R-2R ladder type DAC.	(8)
	(b) Explain different types of ROMs.	(7)
	OR	
X	(a) Develop a programming table for PAL for Boolean functions.	
	$W = AB\overline{C} + \overline{A}\overline{B}C\overline{D}$	
	X = A + BCD	
	$\mathbf{Y} = \overline{\mathbf{A}}\mathbf{B} + \mathbf{C}\mathbf{D} + \overline{\mathbf{B}}\overline{\mathbf{D}}$	
	$Z = AB\overline{C} + \overline{A}\overline{B}C\overline{D} + A\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D$	(8)
	(b) Using appropriate example explain error correction and detection using	
	hamming code.	(7)
