TED (15/19)-3212 (Revision-2015/19)

N21-06430

Reg.No..... Signature.

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE –NOVEMBER -2021.

DIGITAL CIRCUITS

(Maximum Marks : 75)

PART-A

[Time : 2.15 hours]

Marks

(3x2=6)

I. Answer any three questions in one or two sentences. Each question carries 2 marks.

- 1. Convert (367.52)8 to binary.
- 2. Define fan in of a logic gate.
- 3. List the asynchronous inputs to a flip flop.
- 4. Define sensitivity of a digital meter.
- 5. Define the modulus of a counter.

PART - B

II Answer **any four** of the following questions . Each question carries 6 marks.

- 1. State Demorgan's theorems.
- 2. Explain the operation of a Full adder.
- 3. Illustrate the operation of a edge triggered J-K flip flop.
- 4. Compare RAM and ROM.
- 5. Simplify $f = (A + \overline{B}\overline{C}).(A\overline{B} + ABC)$ using Boolean laws.
- 6. Implement EX-OR gate using NAND gate.
- 7. Draw the logic diagram of a serial in parallel out shift register.

(4x6 = 24)

PART - C

(Answer any of the three units from the following. Each full question carries 15 marks)

UNIT I

- (a) Solve the following (i) $(110101.101010)_2 = (----)_8$ (ii) Multiply $(1101)_2$ by $(110)_2$. (6) Ш
 - (b) Reduce the expression $F = \Sigma m (0, 1, 2, 3, 6, 7, 13, 15)$ using K –map. (9)

OR

IV (a) Solve the following (i) Divide (101101)₂ by (110)₂ (ii) (3A9E.B0D)₁₆ =(----)₂. (6) (b) Reduce the expression $F = \prod M(0, 1, 2, 3, 4, 10, 11, 15)$ using K-map.

(9)

UNIT-II

OR

V	(a) Explain the operation of a TTL NAND gate.	(9)
	(b) Illustrate the operation of a 4X1 Multiplexer.	(6)

- VI (a) Explain the operation of a BCD-Decimal decoder. (9) (6)
 - (b) Illustrate the operation of a one bit comparator.

UNIT-III

VII	(a) Design a decade asynchronous counter.	(9)
	(b) Draw the circuit of a parallel in serial out shift register.	(6)
	OR	

- VIII (a) Design a 4 bit synchronous counter. (9)
 - (b) Compare synchronous counter and asynchronous counter. (6)

UNIT – IV

IX	(a)	Explain the operation of a single slope A/D Converter.	(8)
	(b)	Describe the working of a binary weighted converter.	(7)
		OR	
X	(a)	Explain the operation of Successive approximation A/D converter.	(8)
	(b)	Describe the working of a R-2R D/A converter.	(7)
