DIGITAL CIRCUITS

(Maximum Marks : 75)
[Time : 2.15 hours]

PART-A

I. Answer any three questions in one or two sentences. Each question carries 2 marks.

1. Convert (367.52) 8 to binary.
2. Define fan in of a logic gate.
3. List the asynchronous inputs to a flip flop.
4. Define sensitivity of a digital meter.
5. Define the modulus of a counter.

PART - B

II Answer any four of the following questions. Each question carries 6 marks.

1. State Demorgan's theorems.
2. Explain the operation of a Full adder.
3. Illustrate the operation of a edge triggered J-K flip flop.
4. Compare RAM and ROM.
5. Simplify $\mathrm{f}=(\overline{\mathrm{A}+\overline{\mathrm{B}} \overline{\mathrm{C}})} \cdot(\mathrm{A} \overline{\mathrm{B}}+\mathrm{ABC})$ using Boolean laws.
6. Implement EX-OR gate using NAND gate.
7. Draw the logic diagram of a serial in parallel out shift register.

PART - C

(Answer any of the three units from the following. Each full question carries 15 marks)

UNIT I

III (a) Solve the following (i) (110101.101010) $2=(-----)_{8}$ (ii) Multiply (1101) $)_{2}$ by (110)2. (6)
(b) Reduce the expression $\mathrm{F}=\Sigma \mathrm{m}(0,1,2,3,6,7,13,15)$ using K -map.

OR

IV (a) Solve the following (i) Divide (101101)2 by (110)2 (ii) (3A9E.B0D) ${ }_{16}=(----)_{2}$.
(b) Reduce the expression $\mathrm{F}=\Pi \mathrm{M}(0,1,2,3,4,10,11,15)$ using K -map.
(9)

UNIT- II

V (a) Explain the operation of a TTL NAND gate.
(b) Illustrate the operation of a 4X1 Multiplexer.

VI (a) Explain the operation of a BCD-Decimal decoder.
(b) Illustrate the operation of a one bit comparator.

UNIT- III

VII (a) Design a decade asynchronous counter.
(b) Draw the circuit of a parallel in serial out shift register.

OR

VIII (a) Design a 4 bit synchronous counter.
(b) Compare synchronous counter and asynchronous counter.

UNIT - IV

IX (a) Explain the operation of a single slope A/D Converter.
(b) Describe the working of a binary weighted converter.

OR

\mathbf{X} (a) Explain the operation of Successive approximation A / D converter.
(b) Describe the working of a R-2R D/A converter.

