TED (15/19) -2003
(Revision- 2015/19)

A21-00346

Reg.No	 	 	
Signature	 	 	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE – APRIL -2021.

ENGINEERING PHYSICS-II

(Maximum Marks : 75) [Time : 2.15 hours]

PART-A

Marks

- I. Answer any three questions in one or two sentences. Each question carries 2 marks.
 - 1. What is banking of roads?
 - 2. What is meant by Gravitational Potential?
 - 3. State Ohm's law.
 - 4. Distinguish between nuclear fusion and nuclear fission.
 - 5. What is a moderator? (3x2=6)

PART - B

- II Answer any four of the following questions. Each question carries 6 marks.
 - Derive an expression for moment of inertia of a circular disc about
 (a)a diameter (b) a tangent.
 - 2. A train has to negotiate a curve of radius 400 m. By how much the outer rail be raised as compared with the inner rail for a speed of 54 km/hr. The distance between the rail is 1 m.
 - Derive an expression for the escape velocity. Calculate the escape velocity on the surface on the earth. Mass of the earth is 6 x 10²⁴ kg.
 G=6.67 x10¹¹.N m²kg⁻². Radius of earth is 6.4 x 10⁶ m.
 - 4. State Newton's law of gravitation. Derive an expression for acceleration due to gravity from this law.
 - 5. How can a galvanometer be converted to an ammeter?
 - 6. Describe the laws of combination of resistances.
 - 7. Give Einstein's explanation of photo electric effect. [4x6 = 24]

PART - C

(Answer any of the three units from the following. Each full question carries 15 marks)

IINIT I

Ш	(a)	(a) What is meant by angular velocity? Derive the relation between linear velocity		
		and angular velocity for uniform circular motion.	(3)	
	(b)	Derive an expression for the moment of inertia of a uniform circular disc		
		about an axis passing through its centre and perpendicular to its plane.	(6)	
	(c)	A circular disc of mass 40gm rolls along the ground with a velocity		
		0.4 m/s. Calculate its total kinetic energy.	(6)	
		OR		
IV	(a)	Define centripetal acceleration of a body in uniform circular motion and		
		write the expression for it.	(3)	
	(b)	State and explain parallel axes and perpendicular axes theorem.	(6)	
	(c)	A disc of mass 10 kg and radius 20 cm is rotating about an axis		
		with an angular velocity $100~\pi$ rad/s. What is the magnitude of		
		angular momentum.	(6)	
V	(a)	UNIT- II What is a Satellite? What are the uses of polar satellites.	(3)	
	(b)	Derive an expression for orbital velocity and period of revolution of		
		an artificial satellite.	(6)	
	(c)	An artificial satellite revolves the earth very close to the surface.		
		Calculate the orbital velocity and period of revolution from the following		
		Data. $G=6.67 \times 10^{11}$. Nm ² kg ⁻² . Mass of the earth M=6x10 ²⁴ kg. and the		
		radius of earth R=6400 km.	(6)	
		OR		
VI	(a)	What is geo stationary satellite? Describe its application.	(3)	
	(b)	Derive an expressions for variation of g with altitude and depth.	(6)	
	(c)	Calculate the height at which a geo stationary satellite revolves above		
		the earth. Acceleration due to gravity is 9.8 m/s ² .R=6400km.	(6)	

UNIT- III

VII	(a)	State and explain Biot-Savart's Law.	(3)
	(b)	With the help of a neat diagram derive the balancing condition of a	
		Wheatstone's bridge.	(6)
	(c)	A straight current carrying conductor of length 2 m experiences a force of	•
		5 N, when placed perpendicular to a uniform magnetic field 0.5 tesla.	
		Determine the current flowing through it.	(6)
		OR	
VII	I (a) State Kirchhoff's Laws.	(3)
	(b	b) Describe the principle construction and working of a moving coil	
		galvanometer.	(6)
	(c) Two wires have an effective resistance 8 ohm when connected in series	
		and 1.5 ohm when connected in parallel. Find the individual resistance	s. (6)
		UNIT – IV	
IX	(a)	What are the advantages of gas laser over solid lasers?	(3)
	(b)) With the help of a neat diagram. Explain the working of ruby laser?	(6)
	(c)	State laws of photoelectric effect. Explain the terms threshold frequency	
		and photoelectric work function.	(6)
		OR	
X	(a)	Mention three uses of a nuclear reactors.	(3)
	(b)	Mention the essential components of a nuclear reactor and explain the	
		working of a power reactor.	(6)
	(c)	Ultraviolet light of wavelength 280nm is incident on lithium whose	
		work function is $4x10^{-19}$ J. What is the maximum kinetic energy of the	
		ejected electrons.	(6)
