\qquad
\qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL - 2021

ENGINEERING MATHEMATICS - I

[Maximum Marks: 75]
[Time: 2.15 Hours]

PART-A

(Answer any three questions in one or two sentences. Each question carries 2 marks)
I. 1. Evaluate $\sin 30+\cos 60-\tan ^{2} 45$.
2. If $\tan \theta=\frac{1}{2}$, find $\tan 2 \theta$?
3. Find the area of a triangle having the sides $\mathrm{a}=4 \mathrm{~cm}, \mathrm{~b}=2 \mathrm{~cm}$ and the included angle $\mathrm{C}=30^{\circ}$.
4. Find $\lim \theta \rightarrow 0 \frac{\sin 5 \theta}{\theta}$.
5. Find the slope of the tangent to the curve $y=\tan x$ at $x=\frac{\pi}{4}$.

PART-B

(Answer any four of the following questions. Each question carries $\mathbf{6}$ marks)
II. 1. From the top of a light house 90 m high, the angles of depression of two boats on the sea level are 45° and 60°. Find the distance between the boats.
2. Express $\sin x-\sqrt{3} \cos x$ in the form $K \sin (x-\alpha)$.
3. Prove that $\cos 20 \cos 40 \cos 80=1 / 8$
4. Prove that in a $\triangle A B C,(a+b) \sin \frac{c}{2}=c \cos \left(\frac{A-B}{2}\right)$
5. Differentiate ' $\sin x$ ' by the method of first principles.
6. Find $\frac{d y}{d x}$ if $2 x^{3}+6 x y+2 y^{3}=16$.
7. The deflection of a beam is given by $y=4 x^{3}+9 x^{2}-12 x+5$. Find the maximum deflection.

PART-C

(Answer any of the three units from the following. Each full question carries 15 marks)
UNIT - I
III. (a) Prove that $\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}=2 \operatorname{cosec} \theta$
(b) Prove that $\cos 120 \sin 210-\sin 240 \cos 330=1$.
(c) Find the value of $\tan 75$ without using tables and use it show that $\tan 75+\cot 75=4$.

OR

IV. (a) Prove that $\sqrt{\frac{1-\sin \theta}{1+\sin \theta}+\sec \theta-\tan \theta}$.
(b) If $\tan \theta=\frac{5}{12}, \theta$ lies in the third quadrant, find all other trigonometric functions.
(b) Prove that $\sin (A+B) \sin (A-B)=\cos ^{2} B-\cos ^{2} A$.

UNIT - II
V. (a) Prove that $\frac{\sin 3 x}{\sin x}-\frac{\cos 3 x}{\cos x}=2$
(b) Prove that $\frac{\cos 3 A-\cos A}{\sin A-\sin 3 A}=\tan 2 A$.
(c) Solve $\triangle A B C$, if $a=2, b=3, C=4$.

OR

VI. (a) Prove that $\operatorname{Cosec} 2 A+\operatorname{Cot} 2 A=\operatorname{Cot} A$.
(b) Prove that $\operatorname{Cos} 55+\operatorname{Cos} 65+\operatorname{Cos} 175=0$
(c) Two angles of triangular plot of land are 53° and 67° and the side between them is measured to be 100 m . How many meters of fencing is required to fence the plot?

UNIT- III

VII. (a) Find i) $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x^{2}-9}$ ii) $\lim _{x \rightarrow \infty} \frac{x^{2}+x-1}{2 x^{2}+3 x+1}$
(b) Use quotient rule to find the derivative of $\tan \mathrm{x}$.
(c) If $\mathrm{y}=x+\frac{1}{x}$, then prove that $x^{2} y^{\prime \prime}+x y^{\prime}=y$.

OR

VIII. (a) Find $\frac{d y}{d x}$ if i) $y=e^{2 x} \log 2 x \quad$ ii) $y=\sin ^{5}\left(x^{2}\right)$
(b) Find $\frac{d y}{d x}$ if $x=a \sec \theta, \mathrm{y}=\mathrm{b} \tan \theta$.
(c) If $\mathrm{y}=a \cos m x+b \sin m x$ then show that $y^{\prime \prime}+m^{2} y=0$.

UNIT - IV

IX. (a) The distance travelled by a particle moving along a straight line after time t is given by $s=2 t^{3}-9 t^{2}+12 \mathrm{t}+6$. Find the value of t when the acceleration is zero.
(b) Find the equation of the tangent and normal to the curve $y=x^{2}+x-1$ at $x=2$.
(c) Prove that a rectangle of fixed perimeter has its maximum area when it becomes a square. (5)

OR

X. (a) Find the values of x for which the tangent to the curve $y=\frac{x}{x^{2}+1}$ will be parallel to the x axis.
(b) Air is pumped into a spherical rubber bladder of radius 3 inches. If the radius increase at a uniform rate of 1 inch per minute, find the rate at which the volume is increasing at the end of 3 minutes.
(c) The bending moment of a rod of length 10 m and weighing 40 kg and resting at its ends at a distance of x m from one end is given by $M=2\left(10-x^{2}\right)$. Find the maximum bending moment.

